
April 2002 www.stsc.hill.af.mil 13

This article presents several examples
that address the challenges faced by

individuals specifying software require-
ments. For instance, while redeveloping
legacy systems, a government agency
reverse engineered the existing software
requirements. With knowledge of the
application domain, several teams reverse
engineered and defined the requirements.
They represented the user, the contractors,
and the acquisition organization. This
author was assigned as a consultant to
guide the teams in the proper specification
of requirements. The requirements were
analyzed and validated against the follow-
ing critical attributes:
• Complete: Requirements should be as

complete as possible. They should
reflect system objectives and specify
the relationship between the software
and the rest of the subsystems.

• Traceable: Each requirement must be
traceable to some underlying source
such as a system-level requirement.
Each requirement should have a
unique identifier allowing the software
design, code, and test procedures to be
precisely traced back to the require-
ment.

• Testable: All requirements must be
testable to demonstrate that the soft-
ware end product satisfies its require-
ments. To be testable, requirements
must be specific, unambiguous, and
quantitative whenever possible.
Vague, general statements must be
avoided.

• Consistent: Requirements must be
consistent with each other; no require-
ment should conflict with any other
requirement. Check requirements by
examining all requirements in relation
to each other for consistency and com-
patibility.

• Feasible: It must be feasible to devel-
op software that will fulfill each soft-
ware requirement. Requirements that
have questionable feasibility should be
analyzed during requirements analysis
to prove their feasibility. If they can-

not be implemented they should be
eliminated.

• Uniquely Identified: Uniquely identi-
fying each requirement is essential if
requirements are to be traceable and
are able to be tested. Uniqueness also
helps in stating requirements in a clear
and consistent fashion.

• Design Free: Software requirements
should be specified at the require-
ments level and not at the design
level. Describe the software require-

ment functionally from a requirement
point of view, not from a software-
design point of view, i.e., describe the
system functions that the software
must satisfy. A requirement reflects
“what” the software shall accomplish
while the design reflects “how” the
requirement is implemented.

• Using “Shall” and Related Words: In
specifications, using the word “shall”
indicates a binding provision, i.e., one
that must be implemented by the
specification users. To state non-bind-
ing provisions, use “should” or
“may.” Use “will” to express a decla-
ration of purpose (e.g., “The govern-
ment will furnish ...”) or to express
future tense [1].
If projects allocate sufficient time and

effort to validate requirements against
these critical attributes during their defini-

tion and specification, projects will miti-
gate the risks associated with inadequate
requirements.

Requirement Effort Examples
The following examples represent several
legacy systems that were in the process of
redevelopment in a modernization effort.
They depict the requirements effort only
and do not reflect any other life-cycle
activities: design, implementation, test, or
operation. These examples show some of
the requirements as initially specified by
the teams, followed by this author’s cri-
tique of the requirements against the criti-
cal attributes, and finally the resulting re-
specification.

Example 1
Initial specification: Software will not be
loaded from unknown sources onto the
system without first having the software
tested and approved.
Critique: If the software is tested and
approved, can it be loaded from unknown
sources? If the source is known, can it be
loaded if it has not been tested and
approved? This requirement is ambigu-
ous, which makes it difficult to implement
and test. It is stated as a negative require-
ment making it difficult to implement. A
unique identifier is not provided, which
makes it difficult to trace. The word
“shall” is missing.
Re-specification: 3.2.5.2 Software shall
be loaded onto the operational system only
after it has been tested and approved.

Example 2
Initial specification: 3.4.6.3 The system
shall prevent the processing of duplicate
electronic files by checking a new SDATE
record. An e-mail message shall be sent.
Critique: There are two “shalls” under
one requirement number. This is a vague
requirement. What is the e-mail message?
The requirement has design implications
[SDATE record]. A requirement should
specify what the data in the record are and
not the name of the record. The name of

Reducing Risks Through Proper 
Specification of Software Requirements

Al Florence
MITRE Corp.1

Requirement definition, specification, analysis, and validation and verification are some of the biggest challenges faced by soft-
ware engineers. In many software requirements documentation, the requirements are ambiguous and inconsistent. They may
not be uniquely identified, making them untraceable and difficult to test. In many cases, they are specified at a level too high
or too low at the system or at the design level, not at the software requirements level. If these challenges are addressed, the
risk of developing systems that do not satisfy requirements will be mitigated. 

“Each requirement
should have a unique

identifier allowing 
the software design,

code, and test 
procedures to be 

precisely traced back 
to the requirement.”



Risky Requirements

14 CROSSTALK The Journal of Defense Software Engineering April 2002

the record should appear in the design and
code not in the requirement. As specified it
cannot be implemented or tested.
Re-specification: 3.4.6.3 The system
shall:
a. Prevent processing of duplicate elec-

tronic files by checking the date and
time of the submission.

b. Send the following e-mail message:
1. Request updated submission of

date and time, if necessary, or
2. That the processing was successful,

when successful.

Example 3
Initial specification: 3.2.5.7 The system
shall process two new fields (provides pro-
duction count balancing info to the states)
at the end of state record.
Critique: This requirement cannot be
implemented or tested. It is incomplete.
What are the two new fields? “Info”
should be spelled out.
Re-specification: 3.2.5.7 The system shall
provide the following data items (provides
production count balancing information to
the states) at the end of state record:
a. SDATE record.
b. YR-TO-DATE-COUNT.
Re-Critique: This rewrite has design
implications [SDATE record and YR-TO-
DATE-COUNT]. A requirement should
specify what the data in the record are and
not the name of the record.
Re-specification: 3.2.5.7 The system shall
provide the following data items (provides
production count balancing information to
the states) at the end of state record:
a. Submission date and time.
b. Year to date totals.

Example 4
Initial specification: 3.2.5.9 All comput-
er-resident information that is sensitive
shall have system access controls to ensure
that it is not improperly disclosed, modi-
fied, deleted, or rendered unavailable.
Access controls shall be consistent with
the information being protected and the
computer system hosting the data.
Critique: Two “shalls” under one identifi-
er thus two requirements. The require-
ment is vague and incomplete. What does
“consistent” mean? The requirement
needs to identify the sensitive information.
As specified, it cannot be implemented or
tested.
Re-specification: 3.2.5.9 All sensitive
computer-resident information shall have
system access controls consistent with the
level of protection required to ensure that
the information is not improperly dis-
closed, modified, deleted, or rendered
unavailable. (Reference Sensitive Infor-

mation Table 5.4.1 and Levels of Protec-
tion for Sensitive Information Table
5.4.2.)

Example 5
Initial specification: 3.3.2.1 The system
shall have no single point failures.
Critique: This is an ambiguous require-
ment. It needs definition and/or identifica-
tion of what components and/or func-
tions the “no single point failures” applies.
As specified it cannot be implemented or
tested.
Re-specification: 3.3.2.1 The following
system components shall have no single
point failure:
a. Host servers.
b. Networks.
c. Network routers.
d. Access servers.
e. Hubs.
f. Switches.
g. Firewalls.
h. Storage devices.

Example 6
Initial specification: 3.2.7.1 The system
shall purge state control records and files
that are older than the operator or techni-
cal user-specified retention period.
Critique: This requirement cannot be
implemented or tested as stated. It is vague
without specifying the retention period or
providing a reference as to where the infor-
mation can be obtained.
Re-specification: 3.2.7.1 The system shall
purge state control records and files that
are older than the retention period that is
input into the system by either:
a. The operator.
b. The technical user.

Example 7
Initial specification: 3.2.6.3 The system
shall receive and process state data from
the State Processing Subsystem. The sys-
tem shall provide maintenance of the state
data files and generate various reports.
Critique: There are two “shalls” under one
requirement number and multiple require-
ments in the specification. The word
“process” in the first “shall” is vague. The
requirement needs to define the processing
required. The second “shall” does not pro-
vide for valid requirements; they cannot be
implemented or tested as stated. The
requirement needs identification of
type/amount of maintenance required.
The term “various reports” is ambiguous.
Re-specification: 3.2.6.3 The system shall
receive:
a. Production data that contain data from

multiple states.
b. Financial state data for one or more

states, extracted by the State Processing
Subsystem.

3.2.6.4 The system shall parse multi-state
data to respective state files.
3.2.6.5 The system shall display a summary
screen reporting the results of processing
for each state containing:
a. State totals.
b. State generic totals, and
c. State unformatted totals

Example 8
Initial specification: 3.2.7.1 The system
shall not prevent individuals from entering
the year for which they intend the payment,
but shall provide a checkpoint for them to
ensure that they are not making a mistake
in entering the correct year.
Critique: This is a negative requirement;
negative requirements should not be speci-
fied. They cannot be implemented. A
requirement should have all conditions that
are required. If conditions are not required
they will not be implemented. There are
two “shalls” under one requirement num-
ber. I suggest that this requirement be
structured in a positive fashion.
Re-specification: 3.2.7.1 The system
shall:
a. Allow individuals to enter the payment

year.
b. Provide a checkpoint to ensure that

individuals enter the correct payment
year.

Example 9
Initial specification: 3.2.7.3 After the sys-
tem receives the validation file, the system
shall:
• Notify the individual about acceptance

or rejection.
• The acceptance file must contain the

name control and ZIP code of the
approved individual.

• Rejected validation request must
include the Reason Code.

Critique: The second and third bullets do
not make sense, try to read them without
the first bullet:
• The system shall the acceptance file

must...
• The system shall rejected validation…

The requirement uses a “shall” and a
“must.” Unique identifiers are not provid-
ed. The requirement uses bullets, which
should not be used in specifying require-
ments. Bullets cannot be traced. This
requirement is ambiguous and cannot be
implemented or tested.
Re-specification: 3.2.7.3 When the sys-
tem receives a validation file the system
shall:
a. Reject the file if it does not contain the

approved individual’s:



1. Name.
2. ZIP code.

b. Notify the individual about acceptance
or rejection with a reason code.
(Reference Reason Codes Table 5.4.8.)

Example 10
Initial specification: 3.2.8.2  The enroll-
ment process shall take from one (1) to ten
(10) calendar days to complete for all
enrollment types.
3.2.8.3 The enrollment process shall take
no more than three (3) days to complete
for:
a. Credit enrollment.
b. Note enrollment.
Critique: These two requirements are
inconsistent and in conflict with each other.
Re-specification: 3.2.8.2 The enrollment
process shall take:
a. One (1) to three (3) calendar days to

complete for:
1. Credit enrollment.
2. Note enrollment.

b. One (1) to ten (10) calendar days to
complete for all other enrollment types.

Example 11
Initial specification: 3.2.8.6 When doing
calculations the software shall produce cor-
rect results.
Critique: Really?  This is not a require-
ment. This type of requirements should
not be specified. It should be deleted.
Re-specification: Requirement deleted.

Conclusion
The teams identified more than 1,000
requirements. The issues with their initial
specification represented the entire spec-
trum of the critical attributes: complete,

traceable, testable, consistent, feasible,
uniquely identified, and design free. The
teams were receptive to the critiques,
resolved issues, and implemented the rec-
ommendations willingly. The requirements
resulting from this effort were reviewed
with senior management, accepted as spec-
ified, baselined, and allocated to develop-
ment teams for implementation.

If sufficient time and proper effort is
taken to validate requirements against criti-
cal attributes during their definition and
specification, software projects will miti-
gate the risks associated with requirements
and will considerably improve their proba-
bility of success. It is a well-known fact that
if this is not done, projects pay the conse-
quences during implementation and inte-
gration and test, not to mention during
operation.◆

Reference
1. Military Standard Specification Prac-

tices. MIL-STD-490A. U.S. Depart-
ment of Defense, 4 June 1985.

Note
1. The views expressed are those of the

author and do not reflect the official
policy or position of the MITRE
Corporation.

Suggested Readings
1. IEEE Std. 830-1998. IEEE Recom-

mended Practices for Software Require-
ments Specifications. IEEE Computer
Society. 20 Oct. 1998.

2. Cook, David A., and Les Dupaix. “The
Requirements for Good Require-
ments.” Software Technology Confer-
ence Proceedings. Mar. 2001.

Reducing Risks Through Proper Specification of Software Requirements

April 2002 www.stsc.hill.af.mil 15

About the Author 
Al Florence has been
employed at major
technology firms and
is currently at the
MITRE Corporation.
He has been involved

in all phases of the life cycle as a
manager and a developer, from con-
cept to retirement in different engi-
neering disciplines, including sys-
tems, software, test, configuration
management, quality assurance, and
process improvement as a developer
and as a manager. His work has
involved many diversified projects:
spacecraft, aircraft, missiles, weapon
systems, particle accelerators, simu-
lation, and information systems. He
has been involved with the defini-
tion, specification, and validation of
requirements on many of these proj-
ects. Florence has a bachelor’s of sci-
ence degree in mathematics and
physics from the University of New
Mexico, and he did graduate work in
computer science at the University
of California in Los Angeles and at
the University of Southern
California.

The MITRE Corporation
7515 Colshire Drive
McLean,VA 22102-3481
Phone: (703) 883-7476
Fax: (703) 883-1339 
E-mail: florence@mitre.org

The release of any new or revised Capability Maturity Model® has always been 
accompanied with the questions "What does this mean to me?" and "How does this 
compare with what I am already doing with regard to an existing model?" Mappings of the 
Capability Maturity Model for Software (SW-CMMSM) Version 1.1 to and from the Capability 
Maturity Model IntegrationSM for Systems Engineering/Software Engineering/Integrated 
Product & Process Development (CMMI-SE/SW/IPPDSM) Version 1.1 are available on the 
Software Technology Support Center (STSC) Web site at www.stsc.hill.af.mil. The STSC 
performed this mapping.

Mapping of the Capability Maturity Model

Please contact us if you have any questions 
through our Software Process Improvement Help Desk: 

Phone  (801) 777-7214   DSN: 777-7214   E-mail: larry.w.smith@hill.af.mil 


